Volcanism

Intraplate Volcanism
Volcanism, Impacts, and Mass Extinctions: Causes and Effects
Magmatic Rifting and Active Volcanism
Neogene Volcanism and Metallogenesis in the Gutäi Mountains
Volcanism on Io
The Encyclopedia of Volcanoes
Volcanism and Fossil Biotas
Cenozoic Volcanism in the Tyrrhenian Sea Region
Island-arc Volcanism and Episodic Fluvial Sedimentation in the Atlantic Zone of Costa Rica
The Problem of Volcanism
Volcanism and Tectonism Across the Inner Solar System
Planetary Volcanism across the Solar System
Volcanism
Volcanism and the Upper Mantle
Global Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality
Volcanism in Australasia
Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818-1858): A Connection?
Bulletin of the Global Volcanism Network
Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up
Archeology and Volcanism in Central America
Cenozoic Volcanism, Block Faulting, and Erosion in the Northern White Mountains, Nevada
Role of Volcanism in Climate and Evolution
Global Volcanism 1975-1985
Volcanism of the Eastern Snake River Plain, Idaho
Ciomadul (Csomád), The Youngest Volcano in the Carpathians
Volcán Chaitén
Volcanism and Global Environmental Change
Vesuvius, Campi Flegrei, and Campanian Volcanism
Archaeology, Volcanism, and Remote Sensing in the Arenal Region, Costa Rica
Tectonic Implications of Space-time Patterns of Cenozoic Volcanism in the Palo Verde Mountain Volcanic Fields Southeastern California
Modeling Volcanic Processes
Subaqueous Volcanism, from Ancient Successions to Modern Volcanoes and Modelling
Holocene, Arc-volcanism Controlld, Episodic Sedimentation in the Atlantic Lowland of Costa Rica
Carbonatite Volcanism
A Photographic Atlas of Flood Basalt Volcanism
Volcanism and Tectonism in the Columbia River Flood-basalt Province
Recent Volcanism at Amboy Crater
Volcanism on Io
Volcanism and Subduction
Volcanoes are unquestionably one of the most spectacular and awe-inspiring features of the physical world. Our paradoxical fascination with them stems from their majestic beauty and powerful, sometimes deadly, destructiveness. Notwithstanding the tremendous advances in volcanology since ancient times, some of the mystery surrounding volcanic eruptions remains today. The Encyclopedia of Volcanoes summarizes our present knowledge of volcanoes; it provides a comprehensive source of information on the causes of volcanic eruptions and both the destructive and beneficial effects. The early chapters focus on the science of volcanism (melting of source rocks, ascent of magma, eruption processes, extraterrestrial volcanism, etc.). Later chapters discuss human interface with volcanoes, including the history of volcanology, geothermal energy resources, interaction with the oceans and atmosphere, health aspects of volcanism, mitigation of volcanic disasters, post-eruption ecology, and the impact of eruptions on organismal biodiversity. Provides the only comprehensive reference work to cover all aspects of
volcanology. Written by nearly 100 world experts in volcanology, it explores an integrated transition from the physical process of eruptions through hazards and risk, to the social face of volcanism, with an emphasis on how volcanoes have influenced and shaped society. Presents hundreds of color photographs, maps, charts and illustrations making this an aesthetically appealing reference. Glossary of 3,000 key terms with definitions of all key vocabulary items in the field is included.

Volcanism, Impacts, and Mass Extinctions: Causes and Effects

Cambridge University Press

This unique book presents hundreds of spectacular photographs of large-scale to small-scale field geological features of flood basalt volcanism from around the world. Major flood basalt provinces covered in this book include the British Palaeogene, Central Atlantic Magmatic Province, Columbia River, Deccan, East Greenland, Emeishan, Ethiopian, Ferrar-Karoo-Tasmania, Iceland, Indo-Madagascar, Paraná, Siberian, West Greenland, and others. Intermediate- to small-sized flood basalts (such as Saudi Arabia and South Caucasus) are also included. Different chapters of the book illustrate varied features of flood basalts, including landscapes, lava flow morphology and stacking, structures.
formed during lava flow transport, inflation and degassing, structures produced during lava solidification, subaqueous volcanism and volcanosedimentary associations, explosive volcanism, intrusions, igneous processes and magmatic diversity, tectonic deformation, secondary mineralization, and weathering and erosion. This book will be valuable for a large audience: specialists studying flood basalt volcanology, petrology, geochemistry, geochronology, geophysics, and environmental impact and mass extinction links; nonspecialists who want to know more about flood basalts; field geologists (such as those working in geological surveys); students of volcanology and igneous petrology, and even people employed in the industry, such as those working on flood basalt-hosted groundwater or petroleum reservoirs. *Magmatic Rifting and Active Volcanism* Berlin: Springer-Verlag

During the interval of 1818-1858, several curious decreases in the number of sunspot observing days per year are noted in the observing record of Samuel Heinrich Schwabe, the discoverer of the sunspot cycle, and in the reconstructed record of Rudolf Wolf, the founder of the now familiar relative sunspot number. These decreases appear to be nonrandom in nature and often extended for...
1-3 yr (or more). Comparison of these decreases with equivalent annual mean temperature (both annual means and 4-yr moving averages), as recorded at Armagh Observatory (Northern Ireland), indicates that the temperature during the years of decreased number of observing days trended downward near the start of each decrease and upward (suggesting some sort of recovery) just before the end of each decrease. The drop in equivalent annual mean temperature associated with each decrease, as determined from the moving averages, measured about 0.1-0.7°C. The decreases in number of observing days are found to be closely related to the occurrences of large, cataclysmic volcanic eruptions in the tropics or northern hemisphere. *Neogene Volcanism and Metallogenesis in the Gutăi Mountains* (Neogene Volcanism and Metallogenesis in the Gutăi Mountains) Geological Society of America

This volume represents the results of the most recent research on field relationships, volcanology, geochemistry and petrology of Oldoinyo Lengai in Tanzania (East Africa), the only active carbonatite volcano. Peculiarities of carbonatite flows such as the highly sodic composition, their unique mineralogy, their low eruptive temperatures and viscosities, as well as their association with nephelinitic and
phonolitic flows are of major interest to igneous petrologists. The wealth of new data, including the role of carbonatitic melts as metasomatizing agents in the earth's mantle are of interest to petrologists and other geoscientists. **Volcanism on Io**

University of Texas Press

This memoir is the first to review all of Antarctica’s volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed
within and adjacent to one of the world’s major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).

have given people some of the most fertile soil known in agriculture. The research presented in this book is useful for policymakers and researchers from these and other countries who are looking for risk assessment and volcanic evolution models they can apply to similar situations around the world.

Naples and its surrounding area, in particular, the area situated between Vesuvius and the Campi Flegrei volcanic area has a population in excess of 4 million people. The volcanic areas that have similarly large populations in proximity to dormant, but hazardous volcanoes, i.e., Indonesia and Central America can also

have given people some of the most fertile soil known in agriculture. The research presented in this book is useful for policymakers and researchers from these and other countries who are looking for risk assessment and volcanic evolution models they can apply to similar situations around the world.

Naples and its surrounding area, in particular, the area situated between Vesuvius and the Campi Flegrei volcanic area has a population in excess of 4 million people. The volcanic areas that have similarly large populations in proximity to dormant, but hazardous volcanoes, i.e., Indonesia and Central America can also
benefit from this work. Covers the fundamental science of volcanoes, including new developments in the last decade relating to the use of crystals and melt inclusions to model the nature and evolution of volatiles. Includes the latest research on volcanism in Southern Italy that is presented as a case study for active and inactive volcanoes across the globe. Presents research that is applicable around the world, for people, scientists and policymakers living on, or near, active volcanoes. Elsevier A multidisciplinary volume describing the effects of volcanism on the environment, past and present, for researchers and advanced students. Volcanism and Fossil Biotas University of Texas Press "This volume covers new developments and research on mass extinctions, volcanism, and impacts. It addresses the following topics: the Central Iapetus magmatic province; thermogenic degassing in large igneous provinces; global mercury enrichment in Valanginian sediments; Guerrero-Morelos carbonate platform response to the Caribbean-Colombian Cretaceous large igneous province; implications for the Cretaceous-Paleocene boundary event in shallow platform environments and correlation to the deep sea; environmental effects of Deccan
volcanism on biotic transformations and attendant Cretaceous/Paleogene boundary mass extinction in the Indian subcontinent; Deccan red boles; and factors leading to the collapse of producers during the Chicxulub impact and Deccan Traps eruptions"--Cenozoic Volcanism in the Tyrrhenian Sea Region Bib. Orton IICA / CATIE

"This book contains 17 chapters by 13 authors; 10 are single-authored and the others by various combinations of multiple authors. The work is meticulous ranging from regional to site descriptions, and covering remote sensing applications, chipped stone, ground stone, jewelry, phytoliths, pollen, and macrobotanicals. An excellent account of the archaeology in this region beginning with Paleoindian occupations. Provides a complementary data set to those collected under similar circumstances in El Salvador and Panama"-Handbook of Latin American Studies, v. 57.

Island-arc Volcanism and Episodic Fluvial Sedimentation in the Atlantic Zone of Costa Rica Springer Science & Business Media

In the era of modern volcanology, dating back to the eruption of St. Pierre on the Isle of Martinique in 1902, there have been only two directly observed rhyolitic eruptions of significant effect, that of Volcán Chaitén in May of 2008 and of Cordón Caulle in June
of 2011. This volume focuses on the eruptive history, petrology and geochemistry, and eruption dynamics at Volcán Chaitén. Considerable attention is given to the 2008 event, as it literally put this volcano on the map as one of the most important case studies in silicic volcanism. The coexistence of humans and volcanoes posers an important backdrop for this chronicle of Chaitén, as its activity in recent and late-prehistorical times has created valuable sources of obsidian for native peoples.

The Problem of Volcanism
Geological Society of London
A major rifting episode began in the Afar region of northern Ethiopia in September 2005. Over a ten-day period, c. 2.5 km³ of magma were intruded along a 60 km-long dyke separating the Arabian and Nubian plates. Over the next five years, a further 13 dyke intrusions caused continued extension, eruptions and seismicity. This activity led to a renewed international focus on the role of magmatism in rifting, with major international collaborative projects working in Afar and Ethiopia to study the ongoing activity and to place it in a broader context. This book brings together articles that explore the role of magmatism in rifting, from the initiation ofcontinental break-up through to full seafloor spreading. We also explore the hazards related to rifting and the associated
Volcanism. This work has implications for our understanding of how continents break-up and the associated distribution of resources in rift basins and continental margins. Volcanism and Tectonism Across the Inner Solar System

The geological society of London

Planetary Volcanism across the Solar System compares and contrasts the vast array of planetary bodies in the Solar System, including Earth. The wealth of spacecraft data for almost all major solid-surface bodies in the Solar System indicate that volcanism has been a dominant mechanism in shaping the landscapes of these bodies. The book addresses key questions surrounding our understanding of planetary volcanism, such as how to integrate the data into a coherent view of how volcanic activity arises, how this mechanism shapes planets, which volcanic landforms are ubiquitous throughout the Solar System, and which are unique. By placing a singular emphasis on comparing volcanic processes and landforms on all relevant Solar System bodies, and with the explicit objective of providing a systems-level understanding of this widespread phenomenon, users will find an up-to-date, accessible and comprehensive discussion of the major volcanic processes and landforms that shape and drive the evolution
Volcanism

of planets, moons and smaller bodies. Includes an introduction placing the book in the context of the larger Comparative Planetology series. Compares volcanic processes and landforms on all relevant Solar System bodies, providing a systems-level understanding of this widespread phenomenon. Offers a thorough examination of the major volcanic processes and landforms that shape and drive the evolution of planets, moons and smaller bodies. Includes information from new mission data and discoveries in recent years. Features over 100 color illustrations and charts to more clearly convey concepts. Offers additional online content, including figures, animations, video, and other multimedia content such as interviews with contributing authors. Planetary Volcanism across the Solar System. Cambridge University Press. Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 172. The Kamchatka Peninsula and contiguous North Pacific Rim is among the most active regions in the world. Kamchatka itself contains 29 active volcanoes, 4 now in a state of semi-continuous eruption, and I has experienced 14 magnitude 7 or greater earthquakes since accurate recording began in
Volcanism and Subduction covers coupled magmatism and tectonics in this spectacular region, where the torn North Pacific slab dives into hot mantle. Senior Russian and American authors grapple with the dynamics of the cusp with perspectives from the west and east of it, respectively, while careful tephrostratigraphy yields a remarkably precise record of behavior of storied volcanoes such as Kliuchevskoi and Shiveluch. Towards the south, Japanese researchers elucidate subduction earthquake processes with unprecedented geodetic resolution. Looking eastward, new insights on caldera formation, monitoring, and magma ascent are presented for the Aleutians. This is one of the first books of its kind printed in the English language. Students and scientists beginning research in the region will find in this book a useful context and introduction to the region's scientific leaders. Others who wish to apply lessons learned in the North Pacific to their areas of interest will find the volume a valuable reference.

Volcanism Geological Society of America

This book delivers the present state-of-the-art of scientific characteristics of the unique Ciomadul
volcano (Romania, East-Central Europe) from as many aspects as possible. Multidisciplinary research results obtained on this geologically young volcanic complex are presented to a wider audience (geologists, volcanologists, botanists, archaeologists, historians and teachers). Moreover, the book provides information at a general level for interested laypersons and decision-makers. The first part of the book, after summarizing the research history of Ciomadul, presents the details of the volcanism and related topics (volcanology, geology, landscape evolution, minerals, post-volcanic activity and spa culture) in eight chapters; the second part deals with the palaeo-environmental issues of the larger area, along with human history, in nine chapters. Volcanism and the Upper Mantle John Wiley & Sons Volcanism and tectonism are the dominant endogenic means by which planetary surfaces change. This book aims to encompass the broad range in character of volcanism, tectonism, faulting and associated interactions observed on planetary bodies across the inner solar system - a region that includes Mercury, Venus, Earth, the Moon, Mars and asteroids. The diversity and breadth of landforms produced by
Volcanic and tectonic processes is enormous, and varies across the inner solar system bodies. As a result, the selection of prevailing landforms and their underlying formational processes that are described and highlighted in this volume are but a primer to the expansive field of planetary volcanism and tectonism. This Special Publication features 22 research articles about volcanic and tectonic processes manifest across the inner solar system.

Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality

Elsevier

The conference was held in Snowbird, Utah, October 1988, as a sequel to the Conference on Large Body Impacts held in 1981, also in Snowbird. This volume contains 58 peer-reviewed papers, arranged into sections that cover the major themes of the conference: catastrophic impacts, volcanism, and mass mortality; geological signatures of impacts; environmental effects of impacts; patterns of mass mortality; volcanism and its effects; case histories of mass mortalities; and events and extinctions at the K/T boundary. Annotation copyrighted by Book News, Inc., Portland, OR

Volcanism in Australasia

Cambridge University Press

Volcanic eruptions are the clear and dramatic expression of dynamic
processes in planet Earth. The author, one of the most profound specialists in the field of volcanology, explains in a concise and easy to understand manner the basics and most recent findings in the field. Based on over 300 color figures and the model of plate tectonics, the book offers insight into the generation of magmas and the occurrence and origin of volcanoes. The analysis and description of volcanic structures is followed by process oriented chapters discussing the role of magmatic gases as well as explosive mechanisms and sedimentation of volcanic material. The final chapters deal with the forecast of eruptions and their influence on climate. Students and scientists of a broad range of fields will use this book as an interesting and attractive source of information. Laypeople will find it a highly accessible and graphically beautiful way to acquire a state-of-the-art foundation in this fascinating field. "Volcanism by Hans-Ulrich Schmincke has photos of the best quality I have ever seen in a text on the subject... In addition, the schematic figures in their wide range of styles are clear, colorful, and simplified to emphasize the most important factors while including all significant features... "I have really enjoyed reading and rereading Schmincke’s book. It fills a great gap in texts available for teaching.
any basic course in volcanology. No other book I know of has the depth and breadth of Volcanism... I have shared Volcanism with my colleagues to their significant benefit, and I am more convinced of its value for a broad range of Earth and planetary scientists. Undoubtedly, I will use Volcanism for my upcoming courses in volcanology. I will never hesitate to recommend it to others. Many geoscientists from very different subdisciplines will benefit from adding the book to their personal libraries. Schmincke has done us all a great service by undertaking the grueling task of writing the book - and it is much better that he alone wrote it." Stanley N. Williams, ASU Tempe, AZ (Physics Today, April 2005) "Schmincke is a German volcanologist with an international reputation, and he has done us all a great favour because he sensibly channelled his fascination with volcanoes into writing this beautifully illustrated book... [he] tackles the entire geological setting of volcanoes within the earth and the processes that form them... And, with more than 400 colour illustrations, including a huge number of really excellent new diagrams, cutaway models and maps, plus a rich glossary and references, this book is accessible to anyone with an interest in the subject." New Scientist (March 2004) "The science of volcanology
has made tremendous progress over the past 40 years, primarily because of technological advances and because each tragic eruption has led researchers to recognize the processes behind such serious hazards. Yet scientists are still learning a great deal because of photographs that either capture those processes in action or show us the critical factors left behind in the rock record. Volcanism by Hans-Ulrich Schmincke has photos of the best quality I have ever seen in a text on the subject. I found myself wishing that I had had the photo of Nicaragua’s Masaya volcano, which was the subject of my dissertation, but it was Schmincke who was able to include it in his book. In addition, the schematic figures in their wide range of styles are clear, colorful, and simplified to emphasize the most important factors while including all significant features. The book’s paper is of such high quality that at times I felt I had turned two pages rather than one. I have really enjoyed reading and rereading Schmincke’s book. It fills a great gap in texts available for teaching any basic course in volcanology. No other book I know of has the depth and breadth of Volcanism. I was disappointed that the text did not arrive on my desk until last August, when it was too late for me to choose it for my course in volcanology. I am
also disappointed about another fact—the book’s binding is already becoming tattered because of my intense use of it! Schmincke is a volcanologist who, in 1967, first published papers on sedimentary rocks of volcanic origin, the direction traveled by lava flows millions of years ago, and the structures preserved in explosive ignimbrites, or pumice-flow deposits, that reveal important details of their formation. Since then, his studies in Germany’s Laacher See, the Canary Islands, the Troodos Ophiolite of Cyprus, and many other regions have forged great fundamental advances. Such contributions have been recognized with his receipt of several international awards and clearly give him a strong base for writing the book. However, as a scientist who has focused on the challenges of monitoring the very diverse activities of volcanoes, I think that the text’s overriding emphasis on the rock record has its cost. The group of scientists who are struggling with their goals to reduce or mitigate the hazards of the eruptions of tomorrow need to learn more about the options of technology, instrumentation, and methodology that are currently available. More than 500 million people live near the more than 1500 known active volcanoes and are constantly facing serious threats of eruptions. An extremely energetic
earthquake caused the horrific tsunamis of 2004. However, the tsunamis of 1792, 1815, and 1883, which were caused by the eruptions of Japan’s Unzen volcano and Indonesia’s Tambora and Krakatau volcanoes, each took a similar toll. " (Stanley N. Williams, PHYSICS TODAY, April 2005)

Volcanism, Cold Temperature, and Paucity of Sunspot Observing Days (1818-1858): A Connection? Springer

This is a major, definitive, landmark study of the young volcanoes of eastern Australia and parts of New Zealand. It deals with the rock types and origin of the volcanoes as well as the inclusions of the upper mantle and lower-crustal rocks found in the volcanic deposits. Fifty-nine authors contribute a wide range of chapters dealing with the significance of the volcanoes, the insights the area offers about the nature and origin of the earth's crust and the mantle beneath, and the geological evolution of eastern Australia and New Zealand over the past 70-80 million years. University academics and earth scientists in industry will be interested in this book, which will also serve as a highly useful reference work for undergraduate and graduate students.

Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up Cambridge University Press
This is an updated edition of the book by the same author: "Plio-Quaternary volcanism in Italy - Petrology, geochemistry, geodynamics," published in 2005 by Springer. This edition has the same structure as the previous publication, with a general introduction; various chapters dedicated to different volcanic provinces in Italy; and a final chapter on the relationships between magmatism and geodynamics. It includes information that has become available in the last ten years, and new chapters have been added offering detailed discussions of the Oligo-Miocene orogenic volcanism on Sardinia and of some small outcrops of fragmented volcanic rocks occurring in several places of the Apennines. This new edition now covers the entire Tyrrhenian Sea magmatism of the last 40 Ma. Lastly, it includes two appendices: Appendix 1 reports on a comparison between the Tyrrhenian Sea volcanism and the partially coeval magmatism along the Alps and adjoining areas and has the objective of highlighting similarities and difference that can tell us much on geodynamics and magmatism between the converging plates of Europe and Africa.
Appendix 2 is an update of the 2005 edition appendix and deals with classification of orogenic rocks with special emphasis on potassic alkaline volcanics.